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Diffusion and Reaction among Traps: 
Some Theoretical and Simulation Results 

S. Torquato I'2 

Diffusion and reaction in heterogeneous media arise in a host of phenomena in 
the physical and biological sciences. The determination of the mean survival 
time z (i.e., inverse trapping rate) and relaxation times T,, n = 1, 2, 3 .... (i.e., 
inverse eigenvalues), associated with diffusion among partially absorbing, static 
traps with surface rate constant K are problems of long-standing interest. The 
limits ~c = oc and tc = 0 correspond to the diffusion-controlled case (i.e., perfect 
absorbers) and reaction-controlled case (i.e., perfect reflectors), respectively. 
This paper reviews progress we have made on several basic aspects of this 
problem: (i) the formulation of rigorous bonding techniques and computational 
methodologies that enable one to estimate the mean survival time z and 
principal relaxation time T1; (ii) the quantitative characterization of the micro- 
structure of nontrivial continuum (i.e., off-lattice) models of heterogeneous 
media; and (iii) evaluation of z and T I for the same models. We also describe 
a rigorous link between the mean survival time r and a different effective 
parameter of the system, namely the fluid permeability tensor k associated with 
Stokes flow through the same porous medium. 
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1. I N T R O D U C T I O N  

P h y s i c a l  p r o b l e m s  i n v o l v i n g  s i m u l t a n e o u s  d i f f u s i o n  a n d  r e a c t i o n  in  

h e t e r o g e n e o u s  m e d i a  a b o u n d  in p h y s i c a l  a n d  b i o l o g i c a l  s c i ences /~  3~ 

C o n s i d e r a b l e  a t t e n t i o n  h a s  b e e n  d e v o t e d  to  i n s t a n c e s  in  w h i c h  t he  

h e t e r o g e n e o u s  m e d i a  c o n s i s t  of  t w o  r e g i o n s :  a p o r e  r e g i o n  in w h i c h  
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diffusion occurs and a trap region (see refs. 1-14 and references therein). 
Examples are found in such widely different processes as heterogeneous 
catalysis, fluorescence quenching, cell metabolism, diffusion of molecules in 
DNA, migration of atoms and defects i.n solids, colloid or crystal growth, 
and the decay of nuclear magnetism in fluid-saturated porous media. 

Consider the problem of diffusion and reaction among part ial ly  

absorbing "traps" in which the concentration field of the reactants c(r, t) 
at position r exterior to the traps at time t is generally governed by the 
equation 

gc 
- -  = D A c  - ~c8c + G (1.1) 
gt 

with the boundary condition at the pore-trap interface given by 

gc 
D~nn+~C=0 (1.2) 

and initial conditions. Here D is the diffusion coefficient of the reactant, ~:B 
is a bulk rate constant, ~c is a surface rate constant, G is a generation rate 
per unit trap-free volume, and n is the unit outward normal from the pore 
space. Note that for infinite surface reaction (~c = oo), the process is diffu- 
sion-controlled, i.e., the traps are perfect absorbers. In the opposite extreme 
of vanishing surface reaction (x=0) ,  the traps are perfect reflectors. 
Without loss of generality we set the bulk rate constant equal to zero, since 
the solution of (1.1) with tcBr is simply related to the one with ~cB=0 
(see Section 2). 

This paper is concerned with the study of relation (1.1 with condition 
(1.2) for two different situations: 

(i) The s teady-s ta te  solution with ~ = 0. 

(ii) The t ime-dependent  solution with ~c B = G = 0. 

The quantities of central interest are the mean  survival t ime ~ of a 
Brownian particle of problem (i) and the relaxat ion t imes Tn, n = 1, 2,... (or 
eigenvalues) of problem (ii). The times r and T1 are intimately linked to 
characteristic length scales of the pore region. Whereas the mean survival 
time ~ is determined by the "average pore size," the principal  relaxation 
time T 1 is governed by diffusion occurring in the largest cavities (pores) in 
the system. A key fundamental question is, what precisely is the rela- 
tionship between the pore statistics and these time scales? 

The purpose of this paper is to review progress we have made on 
several aspects of this problem: 
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1. The derivation of rigorous bounds on the mean survival time r 
and principal relaxation time T~ in terms of statistical correlation 
functions. 

2. The quantitative characterization of the microstructure of non- 
trivial continuum (i.e., off-lattice) models of heterogeneous media. 

3. The formulation of efficient Brownian-motion simulation tech- 
niques to obtain the mean survival time. 

4. The connection of the steady-state trapping problem to the 
problem of Stokes flow through the same porous medium. 

5. The calculation of z and T~ using the aforementioned methods for 
nontrivial model microstructures. 

In Section 2, we describe the basic equations and discuss the rela- 
tionship between the steady-state and time-dependent problems. Section 3 
discusses rigorous bounds on r and T 1 in the diffusion-controlled limit 
(~c = oc). Section 4 treats bounds on ~ and Tj for arbitrary values of the 
surface rate constant ~c. In Section 5 a recently derived expression is 
described which rigorously links the mean survival time r to a different 
effective parameter of the ~ system, namely, the fluid permeability tensor k 
associated with Stokes flow through the same porous medium. Section 6 
reviews advances made in the quantitative characterization of the 
microstructure of heterogeneous media. In Section 7, we describe Brownian 
motion simulation techniques that yield the mean survival time accurately 
and with a very fast execution time. Finally, in Section 8 we discuss the 
evaluation of bounds on ~ and T~ for a variety of continuum models and 
compare these bounds, when possible, to simulation data. 

2. BASIC  E Q U A T I O N S  A N D  R E L A T I O N S H I P  B E T W E E N  
S U R V I V A L  A N D  R E L A X A T I O N  P R O B L E M S  

The random porous medium is a domain of space V(co) ~ R 3 (where 
tile realization co is taken from some probability space f2) of volume V 
which is composed of two regions: the pore or trap-free region ~(co)  (in 
which diffusion occurs) of volume fraction (porosity) ~bl and a solid-phase 
region ~(co)  of volume fraction ~b 2. Let Vi be the volume of region ~//~, 
V= V1 + V2 be the total system volume, OV(co) be the surface between ~11 
and ~U2, and S be the total surface area of the interface 0~V ". The charac- 
teristic function of the trap-free region is defined by 

1, r e ~//~11(co) (2.1) 
I(r ,  co) = O, r e ~ ; ( c o )  
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The characteristic function of the pore-trap interface is defined by 

M(r, co)= IVI(r, co)l (2.2) 

For statistically homogeneous media, the ensemble averages (indicated 
with angular brackets) of (2.1) and (2.2) yield 

~bl= ( I ) =  lim V--21 (2.3) 
V l , g ~  oO g 

S 
o - = ( M ) =  lim -- (2.4) 

S ,V~oo  g 

which are the porosity and specific surface (interface area per unit system 
volume V), respectively. 

2.1. Steady-State Survival Problem 

Consider the steady-state diffusion of reactants among static traps 
with a prescribed rate of production of the reactants per unit pore volume 
G(x). The trapping constant 7 arising in the relation G(x)=TDC(x) 
for statistically homogeneous media in the diffusion-controlled case 
(i.e., infinite surface reaction) has been expressed by Rubinstein and 
Torquato, (1~ using the method of homogenization, in terms of a certain 
scaled concentration field [where C(x) is a mean concentration field]. The 
trapping constant is given by 

where u solves 

31 = ( U >  1 ( 2 . 5 )  

Au = - 1 in ~11 (2.6) 

u = 0  on c3~//~ (2.7) 

Here A is the Laplacian operator and we extend u in the trap region ~2 
to be zero. As before, angular brackets denote an ensemble average. 
Ergodicity enables us to equate ensemble and volume averages so that 

( u )  = ( u I )  = lim u(r) dr (2.8) 
V ~  oo "//*1 

The trapping constant is trivially related to the average survival time r of 
a Brownian particle by the relation ~ 

1 
r = - -  (2.9) 

7r 
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and therefore use of (2.5) yields 

(u) 
z = - -  (2.10) 

~blD 

Note that the inverse survival time z i is "simply the trapping rate. From 
ref. 12 it is seen that the expression (2.10) still holds for the finite-surface- 
reaction boundary condition at the pore solid interface, i.e., u solves 

Au= - 1 ,  in ~ (2.11) 

D 7--+ ~cu = 0, on ~>U (2.12) 
o n  

Here ~c is the surface rate constant having dimensions of length/time. Of 
course in the case of (2.12) the mean survival time z depends not only on 
D, but also on ~:. 

2.2.  R e l a x a t i o n  P r o b l e m  

The relaxation times associated with the decay of physical quantities 
such as concentration field and nuclear magnetization density are 
intimately related to the characteristic length scales of the pore region. Let 
c(r, t) generally denote the physical quantity of interest at local position r 
and time t. It obeys the following time-dependent diffusion equation in the 
finite but large pore region: 

~C 
- D A c  in ~ (2.13) 

c~t 

c(r, 0) = Co in ~/i (2.14) 

Oc 
D 7--+ tcc = 0 on Q~/" (2.15) 

On 

where n is the unit outward normal from the pore region. Note that we 
could have included a bulk reaction term xBc on the lhs of (2.13), but since 
the solution c(r, t) of such a situation multiplied by exp(KBt) gives the 
corresponding solution with Ks = 0, we do not include bulk reaction. 

The solution of (2.13)-(2.15) can be given as an expansion in 
orthonormal eigenfunctions {0n} (see, e.g., ref. 16): 

c(r, t ) =  ~ ane_,/T, ffn(r ) (2.16) 
C0 n =  i 
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where 
AO==-)~,,O= in ~ (2.17) 

D~-~-~+~=O==O on c?"U (2.18) 

1 
T n = (2.19) D2= 

The T= are the relaxation times. The initial condition and (2.16) yield 

a=t)=(r) = 1 (2.20) 
n = l  

The eigenfunctions ~ ,  are orthonormal such that 

1 
O~ ( OmO=I) = (~mn (2.21) 

so that 
1 

an =-~1 (O=I) (2.22) 

Because the set of eigenfunctions is complete, we also have 

a 2 = 1 (2.23) 
n = l  

At long times, the smallest eigenvalue 21 dominates and therefore the 
principal relaxation time T 1 shall be of central interest. The precise 
dependence of TI on the pore geometry is generally very complex. 

It is useful to introduce the dimensionless surface rate constant 

~cl 
= --  (2.24) 

D 

and distinguish between two extreme regimes, 

>> 1 (diffusion-controlled) 
(2.25) 

~ 1 (reaction-controlled) 

where l is a characteristic pore length scale. In the diffusion-controlled 
regime, the diffusing species takes a long time to diffuse to the pore-trap 
interface relative to the characteristic time associated with the surface reac- 
tion, i.e., the process is governed by diffusion. In the reaction-controlled 
regime, the characteristic time associated with surface reaction is large 
compared with the diffusion time to the pore- t rap interface. 
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2.3. Re la t ionsh ip  B e t w e e n  Surv iva l  and Re laxa t ion  Prob lems 

Torquato and Avellaneda (16) have shown that mean survival time z is 
bounded from above and below in terms of the principal relaxation TI. 
Indeed r is linked to all of the relaxation time (i.e., eigenvalues). These 
statements are given in the form of two propositions. 

Proposition 1. For statistically homogeneous media of arbitrary 
topology at porosity ~b~, the following relation holds: 

r = a n T  n (2.26) 
FI= 1 

where the a,, are the averages of the eigenfunctions ~ ,  given by (2.22). 

The reader is referred to ref. 16 for details of the rather straightforward 
proof of this proposition. The key idea is to take the Laplace transform in 
time of (2.16) and observe that 

where 

De(r, O) 
u(r) = - -  (2.27) 

CO 

~30 

?(r, s) = Jo c(r, t) e -S t  dt (2.28) 

and u(r) is the field satisfying (2.11) and (2.12). Averaging (2.27) and use 
of (2.16) yields the proposition. 

It useful to introduce a Laplace-variable-dependent mean survival time 

(((r, s)) 
z(s )  = - -  (2.29) 

CO~I  

implying the existence of "frequency-dependent" mean survival time. Note 
that z(O) is just the standard s teady-s ta te  or s ta t ic  mean survival time 
defined by (2.10) (2.12). 

Proposition 2. For any statistically homogeneous medium at 
porosity ~b 1, the mean survival time r is bounded from above and below in 
terms of the principal relaxation time T~ as follows: 

a~ r l  ~< r ~< T 1 (2.30) 

where al is given by (2.22). 

The reader is referred to ref. 16 for the proof. 



1180 Torquato 

3. V A R I A T I O N A L  B O U N D S  ON THE S U R V I V A L  A N D  
RELAXATION T I M E S  FOR INFINITE S U R F A C E  REACTION 

For general random media, the complexity of the microstructure 
prevents one from obtaining the effective properties of the system exactly. 
Therefore, any rigorous statement about the properties must be in the form 
of an inequality, i.e., rigorous bounds on the effective properties. Bounds 
are useful since: (i) they enable one to test the merits of theories and com- 
puter experiments; (ii) they become progressively narrower as successfully 
more microstructural information is incorporated; and (iii) one of them 
can typically provide a good estimate of the property for a wide range of 
conditions, even when the reciprocal bound diverges from it. 

Prager (5'17) pioneered the useof  bounds to obtain estimates of effective 
properties in the early 1960s. 

3.1. Bounds on Survival  T ime 

Rubinstein and Torquato (l~ derived variational principles for the 
mean survival time ~ in the diffusion-controlled case (~=  ~) .  They 
formulated the variational principles both in terms of ensemble averages 
and volume averages. Here we state only the ensemble-averaged relations. 
The ensemble-averaged upper bound is given by 

(Vv. V v i )  
z <~ , Vv~ A 

D(b l 

A = {smooth, stationary v; Av = - 1  in ~ }  

(3.1) 

(3.2) 

The ensemble-averaged lower bound is given by 

( u I ) 2  V v E B  (3.3) 
z ) D~bx(Vv. VvI>'  

B =  {smooth, stationary v; v=O on ~?~U and ( v I ) =  ( u I ) }  (3.4) 

In order to obtain specific bounds, one must derive trial fields which 
meet the admissibility conditions of (3.2) and (3.3). Note that if both con- 
ditions (3.2) and (3.3) are met simultaneously, one would be solving the 
exact problem, which, as already noted, is generally not possible. These 
variational principles were applied by formulating four different classes of 
bounds: interracial-surface, multiple-scattering, security-spheres, and void 
bounds.(1o,11) These bounds are given in terms of various types of statistical 
correlation functions and are briefly described below. 
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Interfacial-Surface Upper Bounds: 

27 ~ "c(2U)Eq)I, 0", $2, Fsv , Fss- ] 

Multiple-Scattering Upper Bounds: 

7" ~ ,.c(3u)r~l, 0-, G2, G3] 

Void Upper Bounds." 

7" ~ g(2U)[~l, $2] 

Security-Spheres Lower Bounds: 

(3.5) 

(3.6) 

(3.7) 

T ~ qs(2L)F~I, H a ]  (3.8) 

The right-hand sides of (3.5)-(3.8) represent functionals of certain 
correlation functions. The n-point probability function S , (x ' )  gives the 
probability of finding n points with positions x ' -  = {x 1 ..... x,} in Vll, the 
trap-free region. The surface-void correlation function F,~(Xl, x2) gives the 
correlation associated with having a point at xl on the interface 0V and 
another point at x2 in the trap-free region ~ .  The surface-surface correla- 
tion function kss(-Xl, x2) gives the correlation associated with having a 
point at x I and another point at x2 both on the interface. (The interfacial- 
surface bound was first derived by Doi/18) using an approach different than 
the one used by Rubinstein and Torquato.) The point/q-particle function 
Gn(x 1 ; r  q) gives the correlation associated with having a point at x~ in 
and a configuration of q inclusions with coordinates r q, n = 1 + q. The 
quantity Hp(r) is the so-called particle nearest-neighbor distribution 
function ~ and for sphere distributions is defined such that He(r) dr is the 
probability of finding a nearest neighbor in a shell dr at a distance r from 
a sphere located at the origin. 

3.2. Lower  Bound on Principal Relaxation T ime 

For the diffusion-controlled case, the principal relaxation time T1 = 
l/D21 is known to be bounded from below (2~ by the following expression: 

(~t 2I)  
T~ ~> (3.9) 

D(V~h- V#JI) 
where 

$ = 0  on c ~  (3.t0) 

Here ~O is a trial eigenfunction. 
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Prager (5) employed a trial eigenfunction satisfying (3.10) which gave 
the specific lower bound 

<625 
T 1 > ~ - -  (3.11) 

D 

where the general nth moment is defined by 

(6  ~ > = 6~P(6) d6 (3.12) 

and P(6) is the pore size distribution function. The quantity P(6) d6 is the 
probability that a randomly chosen point in the pore region ~ lies at a 
distance between 6 and 6 + d6 from the nearest point on the interface ~?U. 
The function P(6) normalizes to unity and at extreme values, one has 

G 
P(O) = ~b~ and P(oo ) = 0 (3.13) 

4. B O U N D S  ON THE SURVIVAL  A N D  RELAXATION T I M E S  
FOR FINITE SURFACE REACTION 

For  diffusion-controlled processes (i? = oo), Prager {5) obtained simple 
lower bounds on the mean survival time r and the principal relaxation 
time T1. Here we generalize these results for situations in which the surface 
reaction rate tc is finite by employing the appropriate variational principles. 

4.1. Lower Bound on Survival Time 

Rubinstein and Torquato (1~ derived a variational lower bound on the 
mean survival time ~ in the diffusion-controlled limit. This lower bound has 
been generalized by Torquato and Avellaneda (16) to treat finite surface 
reaction. The following variational lower bound on the mean survival time 

exists: 

<uI> 2 

"c >>. D(~I [ ( V v .  VvI > + (tc/D )< v2M> ] 
(4.1) 

This bound is proved in ref. 16. Here the average of the trial concentration 
field v is equal to the actual concentration field u that solves (2.11) and 
(2.12), i.e., 

<vI> = <uI> (4.2) 
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Consider a trial field of the form 

I)---- 
(u) J(6) 

~1 ~ ,1(3) P(6) d6 
(4.3) 

Insertion of (4.3) into (4.1) yields 

J(6) P(6) d6] 
D~b[jo (dJ/d6) 2 P(6) d6 + (~co-/Dr J2(0)] (4.4) 

Let the deterministic function J be given by 

J(6) = e*3 + d* (4.5) 

where c* and d* are constants to be optimized and n is an arbitrary 
integer. Substitution of (4.5) into (4.4) yields the optimized lower bound 
on r: 

(6)2 -'t- ~1 (4.6) 

For ~ ~ 0% (4.6) reduces to the diffusion-controlled-limit bound obtained 
by Prager. (5) Not surprisingly, finite surface reaction yields a survival time 
which is larger than the one for the diffusion-controlled limit. 

4.2. Lower Bound on Principal Relaxat ion Time 

The first eigenvalue 21 = (T1D) 1 [cf. (2.19)] is bounded from above 
by the relation 

(l/V) ~ , -V0 *. VO * dr + (~c/D V)~e,  (~*)2 dS 
(TID) 1 ~< (l/V) ~,q (0*) 2 dr (4.7) 

where ~* is a trial eigenfunction and dS indicates a surface integration 
over the pore-solid interface. This variational bound is derived in ref. 16. 
Now consider a trial eigenfunction of the form 

~ * ( r )  = G(6) (4 .8)  

where 6(r), as in Section 2, is the minimum distance to the pore-solid inter- 
face and G(6) is some nonstochastic function of 6. We emphasize, however, 
that 6 is a random function of r, since3t varies from point to point in a 
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stochastic fashion. Substitution of (4.8) into (4.7) yields, in the infinite- 
volume limit, 

(TID) 1~< j~~ (dG/d6)ZP(c~)d~+(xa/Dr (4.9) 

To begin with, we choose 

G(6) = a*6 + b* (4.10) 

where a* and b* are constants to be optimized. Observe that 6 vanishes at 
the interface and therefore the constant b* is the only contribution at the 
interface. Without loss of generality, a* is set equal to unity. Substitution 
of (4.10) and optimizing b* gives a lower bound o n  T 1 = 1/D2~, 

T1/> (62)  + 2 ( 6 )  b,  +b2, (4.11) 
D(I + (~a/D~)I) b2,) 

where 

[1 - (Ko/Dq~1)(~52 >] -+- {[1 -- (Ko'/D~1)(~52 > ]2 + (4Ka/Df~I)(a>2} '/2 
b,  -- 2(Ka/Dr 

(4.12) 

Here a is the specific surface and a /e ,  is the interfacial surface area per unit 
pore volume. Note that the bound (4.11) depends upon the first and second 
moments of P(6). For fast diffusion, bound (4.11) has the asymptotic form 

T l ~  q~--!+ 2 ( 2 ( 6 ) 2 - ( 6 2 ) )  (~,~1 (4.13) 
~a D ' 

In the slow diffusion regime, (3.26) yields the asymptotic expression 

(~5 2 ) 3~1(~> 2 
T1 ~>---~ + 4tea(a2 ), k>>l (4.14) 

Note that in the limit k--* 0% relation (4.14) recovers the diffusion- 
controlled limit result of Prager. (s~ Again, finite ~c leads to larger relaxation 
times relative to the diffusion-controlled limit. 

5. RELATIONSHIP OF THE T I M E S  T1 A N D  ~ TO THE FLUID 
PERMEABIL ITY  

If a porous medium saturated with a viscous fluid of viscosity /~ is 
subjected to an applied pressure gradient Vpo, then the induced average 
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velocity Q is proportional to Vpo, i.e., Q = - k "  Vpo/#, where k is the fluid 
permeability tensor. This is referred to as Darcy's law. ~2~) Torquato (~5) 
proved that the mean survival time r for statistically anisotropic porous 
media of arbitrary topology is rigorously related to the fluid permeability 
k arising in Darcy's law for Stokes flow through the same porous medium 
by the relation 

k~<D~b~rU (5.1) 

Relation (5.1) states that the permeability tensor k minus the isotropic 
tensor D~blrU is negative-semideflnite, where U is the unit dyadic. In the 
isotropic case, (5.1) simplifies as 

k ~< D~bl z (5.2) 

Thus, knowing the mean survival time exactly, one can bound the fluid 
permeability and vice versa. Relation(5.1) is remarkable in that it relates 
overall momentum transport on the one hand to overall diffusion transport 
on the other. 

How sharp is the inequality of (5.1)? The equality of (5.1) is 
achieved/15/for one of the eigenvalues for transport in parallel channels of 
arbitrary cross-sectional shape: 

k 3 3  = Oq~l"C = - -  (5.3) 
C0 -2 

where c is a shape-dependent constant (e.g., c = 2 for circles, c = 5/3 for 
equilateral triangles, and c = 1.78 for squares), a is the specific surface, and 
the channels are aligned in the x3 direction. Note that since there is no flow 
in the other principal directions for this anisotropic geometry, i.e., 
kll =k22 =0,  the bound of (5.1) is clearly satisfied. 

For any microstructure with a completely disconnected pore space, k 
is zero, while r is nonzero. Less trivially, for any cubic array of narrow 
tubes, k=DO~r/3. For the case of transport exterior to a dilute bed of 
spheres, k =  2D(~/3,  and thus the bound of (5.1) is relatively sharp. For 
porous media with low prosity and significant tortuosity, bound (5.2) is 
not sharp essentially because ~, unlike k, is relatively insensitive to the 
presence of "narrow throats." Relation (5.2) motivated Wilkinson et al. (22) 
very recently to reexamine the problem of NMR relaxation in fluid- 
saturated porous media by focusing attention on ~ instead of the relaxation 
times Tn. 

In light of the upper bound of Proposition 2 [Eq. (2.29)], we also 
have 

k ~< D~bl T1U (5.4) 

822/65/5-6-23 
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Hence, although (5.2) provides an upper bound on k in terms of T~, it is 
weaker than (5.1). 

It is useful to recall our earlier definition (2.29) of the Laplace-variable- 
dependent mean survival time 

(6(r ,  s ) )  
~(s) - - -  (5.5) 

Co~l 

Torquato and Avellaneda (16) also define the analogous Laplace-variable- 
dependent fluid permeability tensor 

v ( * ( r ,  s ) )  
k(s)  = (5.6) 

where ~) is the Laplace transform of the solution of the time-dependent ten- 
sor Stokes equations, v is the kinematic viscosity, and v0 is some reference 
speed. It is proved that 

k(s) ~< D~b 1 z(s) U (5.7) 

Note that in the static case (s = 0), we recover Torquato's original result 
(5.1). The importance of (5.7) lies in the fact that k(s) can be related to the 
so-called dynamic permeability (23'24) l~(e)), which is the constant of propor- 
tionality in the dynamic form of Darcy's law when the porous medium is 
subjected to an oscillatory pressure gradient with frequency ~o. It turns 
out that the dynamic permeability and the Laplace-variable-dependent 
permeability (5.6) are related by (16) ~ ( ~ ) =  k(s = -i t0),  where i =  x / - 1 .  

6. M I C R O S T R U C T U R E  C H A R A C T E R I Z A T I O N  

Sections 3 and 4 described some of the different types of statistical 
correlation functions (Sn, Gn, Fsv, Fs,, Hp, P) that have arisen in rigorous 
bounds on the mean survival time r and principal relaxation time TI. 
These correlation functions are also fundamental to the study of other 
effective properties of heterogeneous media. O7'18'25 27) Until recently, 
application of such bounds (although in existence for almost 30 years in 
some cases) was virtually nonexistent because of the difficulty involved in 
ascertaining the correlation functions. Are these different types of correla- 
tion functions related to one another? Can one write down a single expres- 
sion that contains complete statistical information? As has been 
demonstrated, the answers to the last two queries are in the affirmative. 
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6.1. Un i f ied  Theore t ica l  A p p r o a c h  

For simplicity, consider first a statistical distribution of N identical 
d-dimensional spheres of radius R (phase2) in volume V distributed 
throughout a "matrix" (phase 1). (More complicated models are described 
below.) In the context of the trapping problem, the matrix phase is the 
trap-free region. Such a model is not as restrictive as one might initially 
surmise, especially since the particles may be allowed to overlap in varying 
degrees, thereby allowing interparticle clustering and thus the generation of 
interesting microstructures with long winding chains or large clusters. 
Therefore, the matrix need not be continuous. The d-dimensional spheres 
are spatially distributed according to the specific N-particle probability 
density PN(r N) which normalizes to unity. The ensemble average of any 
many-body function F(r N) is then given by 

(F(rU))  = f F(rN) PN (rN) drN 

The reduced n-particle generic probability density is defined by 

N! 
P~(rn) (N-n)! f PN(ru) drn+l ""drx (6.1) 

Thus, pn(r n) characterizes the probability of finding any n spheres with 
positions r'. If the medium is statistically homogeneous, the p~(r n) will 
depend upon the relative displacements r12 ..... rln, where r l i = r i - r  1. In 
such instances, it is implied that the "thermodynamic limit" has been taken, 
i.e., N--* ~ ,  V ~  ~ ,  such that the number density p = N/V= p~(rl) is some 
finite constant. 

Torquato (28) has introduced the general n-point distribution function 
[/~(xm; xP-m; r q) which is defined to be the correlation associated with 
finding m points with positions x m on certain surfaces within the medium, 
p - m  with positions x p-m in certain spaces exterior to the spheres, and q 
sphere centers with positions r q, n = p  + q, in a statistically inhomogeneous 
medium of N identical d-dimensional spheres. Torquato found a series 
representation of H,  for such media which enables one to compute it; 
namely, he found that 

H"(xm; xp-m; rq) = (-1)m ~l  " " ~--~-- G"(xP; (6.2) 

where 

G,(xP;rq)= ~ ( - 1 y  G~S)(xP;r q) (6.3) 
s = 0  

822/65/'5-6-23* 
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1 t i f f  f q+s G(nS)(xP;rq)=~. e(ykz;ak) Pq+s(r q+~) VI 
1=1 k = l  .]=q+l 

m(P)(xP; ri) drj 

(6.4) 

(6.5) 
P 

mP(xP; r j )=  1 - 1-I [1 -m(y•; ai)] 
i--I 

1, yu<a (6.6) 
m(yo;a)= 0, otherwise 

e(yu; a)= 1 -m(yij; a) (6.7) 

yo=  I x i -  rj[ (6.8) 

The key idea in arriving at (6.2) is the consideration of adding p "test" 
particles of radii b l ..... bp in the system of N spherical inclusions of radius 
R, with p ~ N. Since the ith test particle is capable of excluding the centers 
of the actual inclusions from spheres of radius ai (where for bi>O, 
a i = R + b i  and for b i=0 ,  a ~ = R - c ~ ,  0~<c~<R), then it is natural to 
associate with each test particle a subdivision of space into two regions: D ,  
the space available to the ith test particle (i.e., the space outside N spheres 
of radius a; centered at r N) and the complement space D*. Let ~ denote 
the surface between Di and D*. Thus, more specifically, Hn(Xm; XP--m; r q) 

gives the correlation associated with finding the center of a test particle of 
radius bl at xl on ~,. . . ,  and the center of a test particle of radius bm at x m 
on 5e m, and the center of a test particle of radius bm+ 1 at Xm+~ in Om+ 1 ..... 
and the center of a test particle of radius bp a t  Xp in Op, and of finding any 
q inclusions with configuration r q, w h e r e  XP-rn~-{Xm+l,...,Xp} and 
n = p + q. Note that it is only in the limit b~ ~ 0 or a~ ~ R that D~ is the 
space exterior to the actual inclusions, i.e., the matrix phase. 

According to relations (6.2)-(6.4), one needs to know the n-particle 
probability densities p, in order to compute the general n-point distribu- 
tion function H,  for distributions of interpenetrable spheres. The p, have 
been extensively investigated in the context of the statistical mechanics of 
liquids and solids. (29) Here of course the microscopic scale refers to the 
arrangement and motion of molecules. Thus, the powerful machinery and 
results of statistical mechanics can be brought to bear on the problem of 
characterizing the microstructure of random heterogeneous media. 

From the general quantity Hn(Xm; XP--m; r q) one can obtain all of the 
aforementioned correlation functions and their generalizations, i.e., 

S.(x') =- S~,I)(x ") = lim H.(fJ; x~; ~ )  (6.9) 
a i ~ R, Vi 

G,(Xl; r q) = lim H , ( ~ ;  x~; r q) (6.10) 
al~R 
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Fs~(xl,x2)= lira H 2 ( x l ; x 2 ; ~ )  (6.11) 
a i ~  R ,  g i  

Fss(X1, X2) = lim H2(Xl, x2; ~ ;  ~ )  (6.12) 
a~ ~ R, Vi 

and 

8 
lira H2(~;  xl;  rl) (6.13) Hp(E)~--  allin'lO ~ a  1 rxl rt, ~ 0  

Here ~3 denotes the empty set. For particulate media the Sn are termed the 
n-point matrix probability functions. Note that the series for Sn obtained in 
this way is identical to the one derived by Torquato and Stell. ~176 Represen- 
tations of the remaining quantities (point/n-particle quantities, surface 
correlation functions, and the nearest-neighbor distribution functions) were 
obtained for the first time from (6.2). Moreover, one can obtain the pore- 
size distribution function P(cS) from the "void" nearest-neighbor distribu- 
tion function (19) Hv(r) for a single test particle of radius bl = r - R  at x~: 

Hv(r) = HI(x1 ; ~b; ql) (6.14) 

Hv(r) dr may be interpreted to be the probability that, at an arbitrary 
point in the system, the center of the nearest inclusion of radius R lies at 
a distance between r and r + dr. This is identical to the function defined in 
the scaled-particle theory of Reiss et al. (31) The functions P(6) and Hv(r) 
for identical spheres of radius R are related in a simple manner: 

P(6) = Hv(6 + R) (6.15) 

Note that Torquato (28) has also given the general asymptotic proper- 
ties of the general Hn for cases in which a subset of the n points are far 
from one another and has given successive upper and lower bounds on the 
H,.  The reader is referred to this reference for further details on these 
topics. 

The concept of a distribution of particles is very general if it is not 
restricted to impenetrable particles. The intersection of particles need not 
have any physical meaning, but is simply a device for generating complex 
shapes from simple elements. An example of an interpenetrable-sphere 
model is the so-called penetrable-concentric-shell or "cherry-pit" model. (32~ 
Here each D-dimensional sphere of diameter 2R is composed of an 
impenetrable core of diameter 22R, encompassed by a perfectly penetrable 
shell of thickness ( 1 - 2 ) R  (cf. Fig. 1). The extreme limits 2 = 0  and 1 
correspond, respectively, to cases of fully penetrable and totally 
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Fig. 1. A distribution of identical disks of radius R in the penetrable-concentric-shell model 
or cherry-pit model. (32) Each disk is composed of an inner impenetrable core ("pit") of 
diameter 22R (indicated by the black circular region) encompassed by a perfectly penetrable 
concentric shell of thickness (1 - 2) R, 0 ~< 2 ~< 1. 

impenetrable spheres. In some instances these limits shall be simply referred 
to as overlapping and impenetrable (hard) spheres, respectively. This is a 
versatile model in that it enables one to vary the degree of "connectedness" 
of the particle phase by varying the impenetrability index 2. 

For  fully penetrable spheres (,~ = 0) at number density p (i.e., number 
of particles per unit volume), there is a complete absence of spatial correla- 
tion between the particles and thus one has the exact simple relation valid 
for all n: 

p~(r') = p", Vn (6.16) 

For d = 2 and d = 3, the particle phase percolates at ~b~ ~_ 0.68 and ~b~ ~- 0.3, 
respectively (see, e.g., ref. 33). For  d = 3 ,  the medium is actually bicon- 
tinuous for the range 0.3~b2~<0.97, where ~b2=0.97 or ~b~=0.03 
corresponds to the percolation threshold of the matrix, (34) i.e., for ~bl < 0.03 
the matrix is disconnected. 

For  totally impenetrable spheres ( 2 =  1) at number density p, the 
impenetrability condition alone does not uniquely determine the ensemble. 
To fix the ensemble, one must specify further information about the process 
of manufacture. For  example, stating that the hard-sphere system is also in 
thermal equilibrium (which, roughly speaking, may be regarded as the 
most random distribution of spheres subject to the impenetrability con- 
straint) completely specifies the distribution. Vastly more is known about 
the equilibrium p~ than about the infinitely many sets of nonequilibrium 
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Dn ,(29) In light of this knowledge and because the former is a reasonable 
model of heterogeneous media, many of the results for the Hn have been 
obtained for equilibrium ensembles. 

For various models of identical d-dimensional interpenetrable spheres 
the lower-order n-point matrix probability functions (3s-37) S,,, surface 
correlation functions (38) Fs~ and Fss, particle nearest-neighbor distribution 
function ~ He,  and the void nearest-neighbor distribution function (19) Hv 
have been evaluated. As an illustrative example, consider the determination 
of H v or, equivalently, the pore size distribution P(6). Torquato et al. 1~9~ 
derived various approximate expressions for the void nearest-neighbor 
function Hv for totally impenetrable spheres. The most accurate of these 
approximations is given by 

Hv(x)= (ex2+fx+g) Ev(x), x > ~  (6.17) 

where 

Ev(x) = (1 - 17) exp[ - r / ( 8 e x  3 + 12fx 2 + 24gx + h)], 
1 

x > ~  (6.18) 

(1+/]) 
e (1-/])3 (6.19) 

/](3+/]) 
f -  2(1 __/])3 (6.20) 

/]2 
g 2 (1 - r / )  3 (6.21) 

- -  9 / ]  2 4 .  7/] - 2 

h =  2(1 _q)3 (6.22) 

r 
x = 2R (6.23) 

Here 

/] = p ~-  R 3 (6.24) 

is a reduced density that for impenetrable spheres is identical to the sphere 
volume fraction ~b2. However, for interpenetrable spheres, /] :r Relation 
(6.17) was found to be in excellent agreement with computer simulations (39) 
for a wide range of volume fractions ~b 2. Here Ev(x) is the "void" exclusion 
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probability,  i.e., the probabil i ty of finding a cavity of dimensionless radius 
x = r /2R empty of inclusion centers. Notice that  when x = 1/2, (6.17) and 
(6.18) give the exact results 

H v ( 1 / 2 )  = a = 3(?2/R (6.25) 

E v ( 1 / 2 )  ~-01 = 1 - r  = 1 - q  (6.26) 

As observed by Torqua to  et aL, the quantities H v ( x )  and E v ( x )  for 
arbi t rary 2 can be obtained from the corresponding quantities for ;t = 1 
[i.e., Eqs. (6.17) and (6.18)] by simply replacing R (on the rhs of the rela- 
tions) with ).R. For  example, carrying out this substitution and taking the 
limit 2 ~ 0 gives the appropria te  simple exact  results for fully penetrable or  
overlapping spheres: 

h ,  , 12fix 2 , 
v t X ) = - - - - - ~ e x p t - 8 r l x 3 ) ,  x >~O (6.27) 

E v ( x )  = exp( - 8fix3), x >~ 0 (6.28) 

F r o m  the relations above, we have for x = 1/2 that  

H v ( 1 / 2 )  = a = (3/R) r/C, (6.29) 

Ev(1 /2 )  = ~bl = 1 - r = exp( -~ / )  (6.30) 

In Fig. 2 we plot the dimensionless pore size distribution P(6) in the 
cherry-pit  model  for 2 = 0, 0.8, and 1, and an inclusion volume fraction 

0 0,2 0.4 O.6 0.8 

~/2a 

Fig. 2. The pore size distribution P(6) versus the dimensionless distance 6/2R for distribu- 
tions of spheres of radius R in the penetrable-concentric-shell or cherry-pit model ~321 for three 
different values of the impenetrability parameter 2:2 = 0, 0.8, and 1. The pore region is the 
space exterior to the spheres. Here the porosity q~a is equal to the trap volume function 
~b2 = 0.5, 
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~2=0.5, using relations (6.15) and (6.17) for spheres of unit diameter 
(2R= 1). 

Thus far we have described results for continuum models consisting of 
distributions of identical spheres. Are there corresponding results for more 
complex continuum models? Recently, th.e formalism of Torquato (28) for 
the general n-point distribution function H, has been extended by Lu and 
Torquato (4~ to treat sphere systems with a polydispersivity in sphere 
diameter. Polydispersivity constitutes an important microstructural feature 
of a wide class of heterogeneous media. The results of Lu and Torquato 
contain as special cases the lower-order Sn for polydispersed systems 
obtained by Stell and Rikvold. (37) Torquato and Sen (4~ and Lado and 
Torquato (42) have recently computed the two-point matrix probability 
function $2 for the anisotropic microgeometries consisting of oriented 
cylinders and spheroids of aspect ratio b/a, respectively. The latter result is 
particularly.interesting in that one can obtain S2(x) for a spheroidal system 
with aspect ratio b/a from S2(x) for an equivalent sphere system at the 
same volume fraction. Indeed, this isomorphism applies to S, for any n, 
namely, (43) 

S,, x12 ..... Xln; =Sn a~ '''''cr~ (6.31) 

where ao = 2a, 

2a 
if(0)-  [1 -- (1 --a2/b 2) cos 2 0] 1/2 (6.32) 

is an angle-dependent "sphere diameter," and Xij-:IXj--Xi[. This 
isomorphism was first exploited by Lebowitz and Perram/44) in the context 
of statistical thermodynamics of aligned hard spheroids. Note that scaling 
relations such as (6.31) apply as well to the point/q-particle distribution 
function Gn(x; r q) for oriented spheroidal systems. 

7. B R O W N I A N - M O T I O N  S IMULATION TECHNIQUES 

Relative to the amount of theoretical work being conducted on predic- 
ting effective properties, there is a paucity of work on "exact" simulations 
of the effective property of interest, especially for "continuum" models. 
Such "computer experiments" could provide unambiguous tests on theories 
for well-defined continuum model microstructures. Computer simulations 
could also yield information on quantities of theoretical importance that 
are not readily measurable in the laboratory. 



1194 Torquato 

Unfortunately, most computer-simulation studies carried out in the 
past have attempted to solve the local governing differential equations for 
the fields (e.g., electric, temperature, concentration, etc.), subject to the 
appropriate boundary conditions at the multiphase interface of the com- 
puter-generated heterogeneous system, using some numerical technique 
such as finite differences or finite elements. This is repeated for all possible 
configurations and then the fields are configurationally averaged, since the 
effective properties depend upon ensemble averages of the fields. This is a 
very inefficient way of getting the average behavior, since there is a signifi- 
cant amount of information lost in going from the local to the average 
fields. Accordingly, such calculations become computationally exorbitant, 
even when performed on a supercomputer. 

Brownian-motion simulation techniques (8'9'45~49) provide a means 
of directly determining effective transport properties of disordered 
heterogeneous media for processes governed by a steady-state diffusion 
equation. Hence, the algorithm can be applied to determine the effective 
electrical and thermal conductivity, dielectric constant, magnetic per- 
meability, diffusion coefficient associated with flow past fixed obstacles, and 
the mean survival time associated with diffusion and reaction among traps. 
In the case of the trapping problem, the simulation method is 
demonstrated to have an execution time that is at least an order of 
magnitude faster than previous simulation methodologies. 

Consider the diffusion-controlled trapping problem first. The diffusing 
particles undergo Brownian motion in the trap-free region ~U~ until they 
come in contact with a trap. The mean survival time ~ is related to the total 
mean square displacement before trapping r 2 by the relation 

f 2 

r - (7.1) 
2dD 

where d is the space dimension. Lee et al. (45) computed r 2 for distributions 
of spherical traps of radius R by performing "continuum" random walks of 
fixed step size a. They obtained simulation data for several step sizes and 
extrapolated to the limit a /R~O.  The so-called Grid method (5~ was 
employed to significantly reduce the computer time required to check for 
trapping. Using the same technique, Miller and Torquato (46) computed kD 
for spherical traps with a polydispersivity in size and compared these 
results to theoretical predictions of kD. Let us call this simulation proce- 
dure "method I". (It should be noted that Richards (8'9) had earlier carried 
our lattice random walks for the same models.) This procedure is already 
considerab!y faster than finite-difference or finite-elements schemes. 

A more efficient Brownian-motion simulation technique recently 
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formula ted  by T o r q u a t o  and K i m  (4s) makes  use of f irst-passage-t ime 
equations.  The basic idea is that  the zigzag r a n d o m  mot ion  of the diffusing 
particle need not  be s imulated in detail. First (referring to Fig. 3), one 
constructs  the largest possible concentr ic  sphere of radius r~ abou t  the 
walker which does not overlap any t rap  particles, and then a point  on the 
sphere surface of radius r~ is chosen randomly.  The radius r~ is related to 
the mean  hitting t ime T~, the average t ime taken by the Brownian  particle 
to first strike the surface of the sphere of radius r~, by 

r 2 = 6 D T ~  (7.2) 

This process is repeated until the r a n d o m  walker  is t rapped and the 
survival t ime is obta ined by summing  over  all the r~, i.e., the mean  survival 
t ime for a single walk and a configurat ion of traps is given by 

r = ~ T , = 3 ~  r~ (7.3) 
i~ 1 2dD 

The mean  survival t ime is then obta ined  by averaging over  m a n y  walks 
and configurations.  In practice, t rapping  can never be achieved in the 

I ~'/" ........................... "'""i 

t i '  . . . . . . . . . .  % /  .......... , ) 

I " ~ "  of ra4ius, r I 

Fig. 3. Two-dimensional schematic representation of the first-passage-time technique 
employed by Torquato and Kim. (48) The zigzag motion of the random walker need not be 
simulated step by step. Instead one constructs the largest concentric sphere of radius r, which 
does not overlap any trap; the next position of the walker is taken to be on the concentric 
sphere surface (and is chosen randomly). This process is repeated, each time keeping track of 
r~, until the walker gets trapped (i.e., comes within a small distance 6 of a trap). 
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course of the simulation. We assume the walker is trapped if it lies within 
a small distance 6 from the trap surface. Let us call this first-passage-time 
approach "method II." 

Table I compares the computing time required to obtain the scaled 
inverse mean hitting time rs/r for a system of equisized, fully-penetrable 
spheres at the reduced densities t /= 0.3 and t /= 0.5 (r/= p4~R3/3), using the 
two aforementioned different algorithms: methods I and II. Here zs is the 
dilute-limit Smoluchowski (4) result, i.e., 

z s = R 2 / 3 0 2  (7.4) 

For a reduced density q = 0.3, method II is about 16 times faster than 
method I. For t /= 0.5, it is about 10 times faster than method I. Thus, the 
first-passage-time method is extremely fast and accurate. 

The first-passage-time method of Torquato and Kim (48) has been 
recently applied by Miller etal. (49) to determine the trapping rate 
associated with diffusion-controlled reactions among oriented spheroidal 
traps of arbitrary aspect ratio b/a. They studied prolate (b/a> 1) and 
oblate (b/a < 1) cases for both overlapping (i.e., spatially uncorrelated) and 
hard (i.e., spatially correlated) traps. 

We have also employed such first-passage-time analyses to compute 
effective conductivities of general n-phase heterogeneous media. In this case, 
one can show that 

2 
0" e r ( t )  linhomog . . . . . .  (7.5) 

2 
171 r ( t )  I homog . . . . . .  

Here the denominator of the right-hand side represents the mean square 
displacement in a reference homogeneous medium of conductivity al and 

Table I. Comparison of Computing Time Required by Two Dif ferent  
Brown ian- io t ions  Algori thms to Obtain the Scaled Inverse Mean Survival 

Time %/~ (i.e., Scaled Trapping Rate) for a System of 
Identical Fully Penetrable Traps at Reduced Densities q--0.3 and 0.5 a 

t /=  0.3 q = 0 . 5  

Algorithm C P U Time "c,/z C P U  Time z,/z 
(hours) (hours) 

Method ][(45) 12.08 2.476 6.85 3.301 
Method I1 (48) 0.77 2.469 0.72 3.330 

a Simulations were performed on a VAX station 3200 using 490 traps, 50 configurations, and 
1000 random walkers per configuration. Here 6/R = 0.0001. 
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the numerator represents the corresponding quantity for the heterogeneous 
medium. Simulations of o e involve two new features: ( l )  different walking 
speeds in each phase, and (2) a nonzero probability of reflection at the 
interface between the different materials. Thus, the first-passage-time equa- 
tions for the mean hitting times and the reflection probabilities in the 
neighborhood of the two-phase interface must be derived. This has recently 
been done by Kim and Torquato and was applied for random distributions 
of inclusions. (51) 

8. CALCULATIONS OF SURVIVAL AND RELAXATION T IMES 
FOR C O N T I N U U M  MODELS 

Here we shall discuss calculations of bounds on the mean survival time 
and the principal relaxation time T 1 for the simple cases of diffusion 

interior to spheres and more complex models of diffusion exterior to 
spherical and nonspherical particles. Bounds on r for particulate traps are 
compared to "exact" Brownian-motion simulation data. 

2.1. Diffusion Interior to Spheres 

Consider diffusion occurring interior to nonoverlapping (i.e., discon- 
nected) spherical cavities of radius R with finite surface rate constant ha. 
For such a simple microgeometry, we know many results exactly. (16) For  
example, we have 

R 2 R 
v = 1 - ~  + ~--~ (8.1) 

0n(r) = B-2 sin(r x / ~ )  (8.2) 
r 

where 

2R2(R22. + K) (8.3) 
B2 = 3(R22. + K 2 - K) 

ha 
K= 1 - ~ = R ~ cot(R x /~ )  (8.4) 

and the associated eigenfunction coefficients are 

3B. sin(r x /~)  (8.5) 
an = ~ n  
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The following asymptotic expressions hold for the principal relaxation time 
T1 = 1/D2, : R R217R3K (~.~_~ ) 

T1 ~-~x+ 1--~q 525D 2 ~ 1 (8.6) 

R 2 2R 
(8.7) T1 - " ~  q- g 2K 

Moreover, the pore size distribution P(6) is given by 

~ 0, 6>R 

This expression combined with (3.12) yields the moments as (16) 

as 

(8.8) 

6R ~ 
( 6 " )  - (8.9) 

(n+  1)(n + 2)(n + 3) 

The lower bound (4.6) on the mean survival time is easily calculated 

R z R 
v >~ 1 - ~  + ~-~ (8.10) 

Comparison of this result to the exact result (8.1) reveals that the bound 
is remarkably sharp. The reason for this is that the mean square displace- 
ment of a Brownian particle (because it is confined to be in a trap-free 
region characterized by a single size) is well described by the square of the 
first moment P(8). Similarly, the lower bounds (4.13) and (4.14) on the 
principal relaxation time T1 yield exactly 

R R 2 (  KR ) 
T1 >~ ~-s + 20 D - f f ~ l  

R 2 5 R (  1r ) 
TI ~']-~ +'~K ---5>>1 

(8.11) 

(8.12) 

Again, comparison to the exact results (8.6) and (8.7) shows that the 
bounds (8.11) and (8.12) are quite sharp. 

It is instructive to examine Proposition 2 [-relation (2.30)] for the case 
of diffusion interior to spheres of radius R. For the perfectly nonabsorbing 
limit (x6) (KR/D ~ 0), 

R 
T1 -- a~ T, = r ~ ~ (8.13) 
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and hence the bounds  in (2.30) are exact since the lowest mode  dominates  
completely. For  the perfectly absorbing limit (~cR/D ~ oc), we have from 
the exact results 

6a  2 a 2 a 2 

a2T1 ~1.c4D, T 1 ~ l r2D , "c~ 15---D (8.14) 

or from (2.30) 

6a 2 a 2 a 2 

~ 4 D  ~ 1 - ~  ~ ~z2D (8.15)  

The bounds  of (8.15) are relatively sharp. 

8.2 .  D i f f u s i o n  E x t e r i o r  t o  P a r t i c l e s  

Figure 4 shows the simulation data of  Lee eta/.  (45) for dimensionless 
t rapping rate or, equivalently, dimensionless inverse survival time rs/r in 
the penetrable-concentric-shell or cherry-pit  model  in the diffusion-con- 
trolled limit (ff = oe) for various values of the impenetrabili ty parameter  2. 
For  fixed volume fraction ~b2, the t rapping rate increases with increasing 2 
because the surface area available for reaction increases. In Fig. 5 we com- 
pare, for the fully-penetrable case (2 = 0), Richards '(8) survival probabil i ty 
theory, the interfacial-surface lower bound  computed  by Torquato ,  (52) and 

30 . . . .  i . . . .  

�9 ; ' , =0 .0  

�9 ~=0 .8  

�9 = . * 

20  

T s 

I 0  

0 I 

0 . 5  

r 

Fig. 4. Dimensionless trapping rate or inverse survival time rs/~ in the cherry-pit model,/32) 
versus trap volume fraction ~b2 for values of the impenetrability parameter 2 = 0, 0.8, and 1 as 
simulated by Lee et al. (45) Dashed lines are spline fits of the simulation data (solid symbols). 
Here G = Ra/3~; and R is the sphere radius. 
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Fig. 5. Dimensionless trapping rate or inverse survival time ~,/z for fully penetrable traps 
()~=0) versus trap volume fraction 4z. The dotted line is a spline fit of the simulation data 
of Lee et al. C45) (solid circles). Included in the plot is Richards' theory tS) and the interfacial- 
surface lower bound computed by Torquato.  152) Here z~ = R2/3(bz. 
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Fig. 6. Dimensionless trapping rate or inverse survival time z~/z for totally impenetrable 
traps (2 = 1 ) versus trap volume fraction ~b z. The dotted line is a spline fit of the simulation 
data of Lee et a/. t45) (solid circles). Included in the plot is Richards' theory ~9) and the inter- 
facial-surface lower bound computed by Torquato.  (52) Here T s = R2/3~2. 
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the simulation data.(45) Richards' theory is in excellent agreement with data 
for all q~2. (We note that Szabo, (13) using a different method, obtained an 
expression for the trapping rate which is identical to Richards' expression.) 
Figure 6 gives the corresponding comparison for the case of totally 
impenetrable traps ()o=1). Here the survival probability theory of 
Richards ~ actually dips below the data and indeed violates the lower 
bound computed by Torquato (52) for ~2 > 0.52. (Various definitions of the 
trapping rate exist in the literature; see Richards and Torquato (53) for a 
discussion of the relationships between these different definitions. In 
particular, the definition used in refs. 8 and 9 is different from the one of 
ref. 52.) 

Figure 7 depicts the simulation data of Miller et aL (49) for dimen- 
sionless trapping rate or inverse survival time a2/rD versus log(b/a) for 
both impenetrable and overlapping oriented spheroids of aspect ratio b/a at 
~b 2 =0.3. Included in the figure are the corresponding calculations of the 
two-point void lower bound (3.7) on ~-1 as obtained Torquato and 
L a d o ( 4 3 ) :  

a 2 >. ~ , ~  f b 
~-D ~ 4--(-~o ( a )  (8.16) 

60  . . . .  I . . . .  E . . . .  , . . . .  

a 2 

"rD 

2ci i 
o 
-1  1 

r = 0 .3  

",Q. ',, 

- 0 . 5  0 0.5  

log(b/a) 

Fig. 7. Dimensionless trapping rate or inverse survival time a2/zD versus the log of the 
aspect ratio b/a for hard, oriented spheroids and overlapping, oriented spheroids at a spheroid 
volume fraction ~b2 = 0.3, Filled and unfilled circles are the hard and overlapping simulation 
data, respectively, of Miller e t  aL(49); dotted lines are spline fits of the data. Solid and dashed 
lines, respectively, are the lower bounds for hard and overlapping spheroidal traps obtained 
by Torquato and Lado. I43) 
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where (X)o is the first momen t  of the two-point  probabili ty function for 
the equivalent spherical system of radius a and volume fraction defined by 

E (X)o= xES~(x)-O~] dx (8.17) 

Note  surprisingly, the t rapping rate, for fixed ~b2, decreases with increasing 
aspect ratio; prolate and oblate results are always below and above the 
sphere results (b/a = 1), respectively. This is related to the fact that  surface 
area available for reaction decreases as b/a increases for fixed ~b2. Whereas 
r - 1  gradually changes as the aspect ratio b/a is varied for prolate 
spheroidal traps, r 1 dramatical ly increases as the spheroids become 
disklike (b/a < 1). For  the case of impenetrable oblate traps, the data  for 
the range 0.1 ~< b/a ~< 1 obey the following power law: 

a2/rD ~ (b/a) -~ (8.18) 

where the exponent  ~ (approximately unity) weakly depends on ~bz(~ = 0.99 
at ~b2=0.1, ~ =  1.07 at ~2 =0.3, and ~ =  1.11 at ~b2= 0.5). 

In  Fig. 8 we compare  the lower bound  (4.6) on the dimensionless sur- 
vival time zD/R 2 (where R is sphere radius) in the diffusion-controlled case 
(t~=xR/D= ~ )  to the simulation data  of Lee etal. (45) for the cherry-pit  
model  (32) in the extreme limits of the impenetrabili ty parameter  2. Corn- 
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Fig. 8. Comparison of the lower bound (4.6) on the dimensionless survival time r D / R  2 in the 
diffusion-controlled limit (ff = oo) versus trap volume fraction ~ 2  (dotted lines) to the simula- 
tion data (solid lines) of Lee et al. (45) for spherical traps of radius R in the cherry-pit model ~ 
in the extreme limits of the values of the impenetrability parameter 2, i.e., 2 = 0 and )~ = 1. 
Here g = ~cR/D. 
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parison to simulation results for r shows that the lower bounds on 
become relatively sharper as the trap volume fraction ~b2 increases. The 
reason for this is that the square of the moment ( 5 )  provides an 
increasingly better estimate of the actual mean square displacement of a 
Brownian particle a s  @2 is made larger or as the porosity ~1 = 1 -  ~b2 is 
made smaller. 

In Fig. 9 we plot the lower bound (4.11) on the dimensionless relaxa- 
tion time T1D/a 2 versus the trap volume fraction ~b2 in the cherry-pit model 
for 2 = 0, 0.8, and 1 with ~? = ~ca/D = ~ .  As in the survival problem, the 
relaxation time Tt increases with decreasing impenetrability for fixed 
volume fraction. 

Since we have no simulation results for T I, it is natural to ask, how 
sharp are the bounds obtained for Tt in the cherry-pit model? Consider 
this question first for the case of fully penetrable spheres; i.e., Poisson dis- 
tributed sphere centers with reduced density q. The principal eigenvalue 21 
of the Laplacian operator for such a system of spheres of radius a in a cubi- 
cal box of length L is proportional to (alL)  2 for L >> 1 or, equivalently, the 
principal relaxation time Tt is proportional to (L/a) 2 for L >> 1. The reason 
for this divergent behavior is that T1 is determined by the large fluctuations 
of the ensemble of configurations, corresponding to the existence of very 
large pores, and such behavior is accompanied by the appearance of a con- 
tinuous spectrum in the infinite-volume limit. The corresponding density of 
states near 22 = 0 is known as the "Lifshitz spectrum" in the theory of dis- 
ordered systems. (54) The associated average survival probability behaves 
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Fig. 9. Lower bound (4.11) on the dimensionless relaxation time T 1 D / R  2 versus the trap 
volume fraction ~b 2 in the cherry-pit model {32) for impenetrability 2 = 0 ,  0.8, and 1 with 

= K R / D  = oo.  
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like the stretched exponential exp[- -cons tant  t a/(a+2)] in d dimensions as 
t ~  ~(54.5s) Although such large pore fluctuations are exceedingly rare, 
they exist with nonzero probability for this Poisson system and this is 
reflected in the fact that the pore size distribution P(6) has infinite support. 
However, such fluctuations do not exist in most real porous and 
heterogeneous media since the range of pore sizes is bounded, i.e., P(5) 
typically possesses finite support. Indeed, in a Monte Carlo simulation of 
T1 for a Poisson system of spheres, large fluctuations are eliminated since 
one considers a constant number of particles in a cubical box (with 
periodic boundary conditions) each realization consistent with a value 
of the volume fraction ~b2. For  practical purposes, P(6) for the Poisson 
system has finite support, a6) i.e., it is supported in the interval [0, 60]. For  
example, from Fig. 2 for @i =r  =0-5, 5o/2R ~- 0.7 for 2 = 0  ("Poisson" 
distribution) and use of the relation v6) that T~<<,c62/D (where c is a 
bounded constant) suggests that the lower bound (62>/D on T 1 in Fig. 9 
provides a coarse estimate of T~. Similar arguments apply to the cherry-pit 
model in general even though pore-size fluctuations will be smaller for a 
nonzero impenetrability parameter. 

To summarize, the lower bound (4.11) on T1 will yield a reasonable 
estimate of the relaxation time provided that the pore size range is finite. 
On the other hand, for systems possessing very wide fluctuations in pore 
size, the bound will not be sharp and one could argue that the considera- 
tion of a single relaxation time, based on the smallest eigenvalue, is no 
longer appropriate. However, the bound (4.11) on the mean survival time 
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I X=0.8  

R2 X=l 
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O0 0.2 0.4 0.6 0.8 
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Fig. 10. Lower bound (4.6) on the dimensionless survival time zD/R 2 v e r s u s  @2 for totally 
impenetrable traps (Z=l) for several values of the dimensionless surface rate constant 

= ~cR/D: ~ = or, 0.5, and 0.1. 
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z is a more  robust  est imator of ~ since it is related to the entire spectrum 
of eigenvalues (see Eq. (2.26) below). 

The lower bound  (4.6) on the dimensionless survival time z D / R  2 

versus ~b 2 for totally impenetrable traps (2 = 1) for several values of the 
dimensionless surface rate constant  ff(oo, 0.5, 0.1) is depicted in Fig. 10. 
Observe that the lower bound  on ~ increases with decreasing surface 
reaction. This is consistent with the fact that  the diffusing particles survive 
longer when the surface reaction is finite relative to the case if: = oo (i.e., 
diffusion-controlled limit) since particles are not  always absorbed when 
they strike the surface. The behavior  of  the bound  on T1 for finite ff is 
qualitatively similar to that  for r and hence is not  shown graphically. 
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